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Using the boundary-layer approach, we study the radial-axial transition in a nematic sphere in the presence
of an external field. We calculate analytically an asymptotic expression for the nematic configuration subject to
an external low frequency field. Then, we consider an incident plane wave crossing a nematic droplet im-
mersed in an isotropic matrix under the presence of a low frequency field. We calculate the ray trajectories
within the optical limit for various values of the external field and find the ray deviation as a function of the
incident position parametrized by the magnitude of the field.
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I. INTRODUCTION

The development of polymer-dispersed liquid crystals
�PDLCs�, which are dispersions of liquid crystal rich drop-
lets in a polymer matrix �1�, has brought a great deal of
interest in the study of light propagation in spherical geom-
etries. The size of spherical droplets in these materials is
usually uniform but can vary between 0.1 and 10 �m. The
nematic configuration within droplets depends on the surface
anchoring and elastic constants, and is responsible for the
refractive and birefringent properties of the droplets. It
should be mentioned that the electro-optical effect of PDLCs
is one of the reasons for their potential applicability in dif-
ferent devices �2,3�. This effect consists in a change of ap-
pearance of the PDLC cell from turbid to transparent, after
applying a low frequency electric field to the cell plates.

There are some pioneering works �4,5� devoted to analyz-
ing light scattering from a nematic droplet. Two complemen-
tary physical limits were considered in these works, namely,
the Rayleigh-Gans approximation and the anomalous-
diffraction approach which assume, respectively, a much
smaller and much larger droplet radius than the wavelength
of the light, and also both of them suppose a small dielectric
anisotropy. For the latter work these assumptions allow the
author to consider the light as a ray which does not change
its direction but only suffers a change of phase, that is to say,
the refractive effects which stem from the local changes of
the refraction index induced by the nematic configuration are
completely neglected. These refractive effects are expected
to be important in birefringent and inhomogeneous media
like liquid crystals even for moderate dielectric anisotropy
values, and are able to curve the trajectory of light beams as

well as induce local changes of phase instead of a global one,
which can develop richer diffraction patterns.

The purpose of this work is to study this refractive effects
by calculating the ray trajectories corresponding to the trans-
verse electric and magnetic modes when propagating in a
nematic droplet, in the limit of geometrical optics. More spe-
cifically, we shall calculate the ray trajectories of an initially
plane wave when it enters and emerges from a nematic drop-
let with homeotropic alignment and under the action of an
external uniform low frequency field.

The outline of the paper is as follows. In Sec. II we derive
an analytical approximation for describing the polar depen-
dence for the nematic droplet structure in the presence of an
external field. In Sec. III we apply the boundary-layer theory
to find the asymptotic radial dependence of the nematic con-
figuration. In Sec. IV we discuss the transverse magnetic and
electric eikonal equations valid in the limit of geometrical
optics. In Sec. V we calculate the ray trajectories for the
radial and axial configurations by solving numerically
Hamilton’s equations. Finally, Sec. VI is devoted to summa-
rizing our work and presenting our results.

II. NEMATIC CONFIGURATION

We consider a nematic sphere of radius R which satisfies
the weak-anchoring homeotropic boundary conditions �6�.
For simplicity we will consider an external field E which is
parallel to the z axis of our system coordinate. Then, if � is
the polar angle with respect to the z axis, one may express
the nematic director n̂ in terms of the angle �, measured
from ê� and contained in the plane defined by this vector and
êr, as �see Fig. 1�

n̂ = cos ��r,��êr − sin ��r,��ê�, �1�

where r is the radial variable. Notice that by using this
�-independent parametrization we are implicitly neglecting
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twist deformations. To determine the stable structure of the
nematic liquid crystal at constant volume and temperature,
we generalize the formalism developed by Kralj et al. �7�,
where they take into account bulk and surface elastic forces
as well as external forces. For supramicrometer spheres, far
below the nematic-isotropic phase transition, the local biax-
ial and spatial dependence effects of the nematic order pa-
rameter can be neglected �8� and thus the nematic directors,
n̂ can be determined by minimizing the Helmholtz free en-
ergy F,

F = �RK/2��
V

ds e−sd��� ��

�s
�2

+ � ��

��
�2

+ 4 cos2 � + sin2 �

+ cot2 � sin2 � − sin 2�
��
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− 2�2 cos2 � + sin2 ��

��

��

+ 2
��
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��
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�
 +

�

R
sin2 ���s�� , �2�

where � is the solid angle, h is a dimensionless field defined
by h2�	aE0

2R2 / �4
K� with E0 the low frequency field am-
plitude, s=−ln�r /R�, and 	a=	
 −	� the dielectric anisotropy
with 	
 and 	� the dielectric constants parallel and perpen-
dicular to the optical axis. Here K=K1=K2=K3 are the elas-
tic constants in the equal elastic constant approximation,
��RW0 /K1, where W0 is the anchoring strength �9�, and we
are taking K24= �K1+K2� /2, as given by the Maier-Saupe
molecular approach �10,11�. Finally, we take �splay-bend�
K13�0 in agreement to Ref. �11� where the controversy
about this constant seems to have been solved. By taking the
variational derivative of F, we find for the bulk

0 =
�2�

�s2 +
�2�

��2 −
��

�s
+ cot �

��

��
+ sin 2� −

sin 2�

2 sin2 �

− 2 cot � sin2 � − h2e2t sin 2�� − �� �3�

and for the border r=R

0 =
��

�s
− cos � sin � + cot � sin2 � + � cos � sin �

+ �K24

K
�sin 2� − cot � sin2 ���

r=R
. �4�

Equations �3� and �4� have been solved numerically by using
a relaxation method �7�. However, since our final aim is to
describe the light trajectories within the droplet, it is conve-
nient to have an approximated but analytical solution to es-
tablish the governing equation for the ray trajectories.

To find an approximated expression for � we use the
dominant balance technique �12� which finds the asymptotic
behavior of � around the singularities of Eq. �3�. Notice that
this equation shows singularities for �=0 and �=
 which are
located on the sphere diameter parallel to the external field.
Since in the vicinity of this diameter n should be almost
aligned with E, � is expected to vanish, and since along this
diameter n remains constant, the radial derivatives should
satisfy the expressions ���� /�s���=0,
= ���2� /�s2���=0,
=0.
Under the presence of E, the configuration has azimuthal
invariance around the E direction so that ����=��−�� and
��
−��=��
+��, which implies that ���2� /��2���=0,
=0.
All these considerations allow us to approximate the last
equation around its singularities as

��

��
−

sin 2�

sin 2�
= 0, �5�

which can be solved directly, yielding as its general solution

tan � = ��s�tan � , �6�

where ��s� is an arbitrary function of s which satisfies the
boundary conditions

�d��s�/ds + ��s��� + 1�/h�r=R = 0 �7�

and

��s = �� = 1. �8�

Here the first condition comes from the radial boundary con-
dition �surface term of Eq. �2�� and the second one guaran-
tees the continuity of � at the center. It is important to re-
mark that although this expression was derived around the
vicinity of the singularities �=0 and �=
, it gives the exact
value for the equator �=
 /2 where �→
 /2, as can be seen
by noting that here ���� /�r���=
/2= ���2� /�r2���=
/2

= ���2� /��2���=
/2=0 is also satisfied, and thus Eq. �6� does
satisfy Eq. �3� as well as in the neighborhood of the equator.
The fact that Eq. �6� is a good approximation for the solution
of Eq. �3� near �=0, 
 /2, and 
 makes n̂��=0,
 /2 ,
�
parallel to ẑ on the z axis and on the equator plane for any
��t�; which is the expected symmetry for the axial configu-
ration. In summary Eq. �6� is exact at the equator, along the
z axis, and at the border of the sphere where the boundary
condition is satisfied �see Fig. 1�.

III. RADIAL DEPENDENCE

In the preceding section we found the � dependence of the
configuration � but the radial dependence remains to be de-

FIG. 1. Schematics of a nematic droplet subject to an external
uniform low frequency field. We indicate in gray the regions for
which the asymptotic expression for the configuration given by Eq.
�6� is exact.
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termined. To write an equation for ��s�, we insert Eq. �6� into
Eq. �2� and minimize the latter equation, following the same
steps as in the last section. However, the resulting equation is
not autonomous, since it depends explicitly on s, and does
not have an analytical solution. In what follows we shall
approximate ��s� for intense fields h
1.

As is well known, the effect of the external field on the
nematic is usually opposed to the elastic force effect, particu-
larly at frontiers of the nematic where the molecules anchor
the walls. This effect is stronger for intense E since in the
regions that lie far from the frontier �bulk�, the nematic is
practically aligned with the field whereas within a layer of
nematic in contact with the solid walls, the orientation shows
great spatial gradients, such that it reaches the boundary con-
ditions. These two regions with different behaviors can be
described simultaneously by using the boundary-layer tech-
nique �13,14� for which the bulk is called the exterior region,
�ext�z�, and the region within the layer is called the interior
one, �in�z�. The solutions for both regions are coupled or
matched asymptotically to give rise to a uniform solution
�adj valid for all the domain and is given by

�adj = �ext + �in − �match, �9�

where �match is defined by

�match = limh→� �in = limr→��ext, �10�

where � represents the region for which �ext cannot satisfy at
least one of the boundary conditions, which in our case is the
border of the droplet, and h is related to the thickness of the
interior region or boundary layer.

In order to use this method, we start by approximating the
differential equation with respect to a convenient parameter,
which in this case is h, which usually reduces the order of the
differential equation. Solving this equation, we find the ex-
ternal solution �ext, which is not able to satisfy at least one of
the boundary conditions. Next, we rewrite the original equa-
tion in terms of a scale variable constructed by using h and
choosing as spatial scale that which keeps the superior order
derivatives even in the limit of large h. The solution of this
equation provides us the internal solution �in�h ,z� which
should be able to satisfy that condition which �ext cannot
satisfy. The final step is to match asymptotically both solu-
tions �ext and �in to obtain a solution �adj valid in the whole
domain which according to the boundary-layer theory is
given by Eq. �10�.

It is illustrative to show that the solution of the corre-
sponding Euler-Lagrange equation associated with Eq. �2�
presents boundary-layer behavior �14� for large uniform
fields E, by noting that in this case the dominant term of F is
�	a /4
��n̂ ·E�2�h2e−2s cos2��−�� which only minimizes F
when n̂ is parallel to E ��ext���. In this way �ext describes a
uniform configuration �outer solution� and then �ext could
just satisfy accidentally the radial boundary condition given
by the surface terms of Eq. �2�. This suggests that in the
vicinity of the sphere border the radial variable of the solu-
tion �inner solution� should vary with a faster scale.

To study the inner solution �in, we introduced the fast
variable t�−h ln�r /R� where h is a dimensionless field. We
choose t�h because this is the only way in which the maxi-
mum power of the rescaled derivative is to be proportional to
the same power of h as the external field. Substituting Eq. �6�
into Eq. �2� and keeping the dominant terms in h yields

F = �RKh/2��
0

�

dt e−t/h	e„�in�t�…�d�in�t�
dt

�2

− f„�in�t�…

+ ��t�s„�in�t�…�d�in�t�
dt

+
1 + �

h
�in�t�� + O�1

h
�
 ,

�11�

where e(�in�t�), f(�in�t�), and s(�in�t�) are given by

e„��t�… � �
0


 sin3 � cos2 �d�

��2 sin2 � + cos2 ��2 , �12�

f„��t�… � �
0


 sin ��� sin2 � + cos2 ��2

�2 sin2 � + cos2 �
, �13�

and

s„��t�… � �
0


 sin ���2 sin2 � + �1 − ��cos2 � − ��
�2 sin2 � + cos2 �

. �14�

Although in principle �in�t� is only able to describe the con-
figuration in the boundary layer, the fact that the bulk �outer�
configuration �out�t��1 is a constant and that Eq. �7� is sat-
isfied makes �in�t� indeed the valid solution for � in the
whole domain. The Lagrangian given by Eq. �11� is t inde-
pendent, and hence has an integration �Euler constant� and is
given by E=e(��t�)�d��t� /dt�2+ f(��t�). Notice that when
��t�=1 the nematic is not undistorted; thus the elastic con-
tribution should vanish and E= f�1�. In this way the solution
of this equation that satisfies the boundary condition
d��0� /dt+��0���+1� /h=0 is given by

1

h
ln� r

R
A�

= �k3 dk
���1 − ���− 3� +

2�2 + 1
�1 − �2

arctan��1 − �2

�
�

4 + 2�2

3
− 2�

arctan��1 − �2/��
�1 − �2

.

�15�

Here ��0��k0���+1� /h� is only a function of ��+1� /h be-
cause the boundary condition can be written as an algebraic
function of ��0�. In Eq. �15� we have separated explicitly the
poles of the integrand whereas the remaining expression be-
haves like a constant. Thus, it is a good approximation to
replace it by 1 so that Eq. �15� turns out to be
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1

h
ln� r

R
A� = ��3 d�

���1 − ��
= ln�1 − ��2

1 + ��2
� . �16�

This can be checked quantitatively by performing the nu-
merical integral �0

1�r��2�−r��3��2dk /A�7.2�10−5, which
shows that these functions are really close in the whole in-
terval. Solving Eq. �16� for k2 we obtain

�2�r� = �1 − B�r/R�h

1 + B�r/R�h�2

, �17�

where B= �1−��0� / �1+��0� and

k0 = − ��1 + �1 + ��2/2h2�2 − 1 + 1 + �1 + ��2/2h2

.
To illustrate graphically the behavior of this configuration,

we substitute � in Eq. �6� which in turn we substitute in Eq.
�1�, to obtain the following result:

n̂ =
2��2 + z2�hz�ê� + ��1 + ��2 + z2�h�z2 + �2�1 − ��2 + z2�h��k̂

��2 + z2�z2�1 + ��2 + z2�h�2 + �2�1 − ��2 + z2�h�2

�18�

where z= �r /R�cos � and �= �r /R�sin � are the cylindrical co-

ordinates and ê� and k̂ are the unit vectors in the � direction
and in the z direction, respectively. We can exhibit geometri-
cally the nematic configuration if we define the director lines
as follows:

d�

dz
=

n�

nz
= 2z�/��1 + ��2 + z2�−h�z2 + �2���2 + z2�−h − 1�� .

�19�

Similarly as the electrostatic field lines are defined, n̂ is par-
allel to the tangent to the curve which touches the point
where n̂ is to be calculated. The insets of Figs. 3 below show
some curves obtained from Eq. �19� which are depicted for
equidistant angles on the droplet frontier for various values
of h in increasing order. It can be seen, as should be ex-
pected, that the curves are more aligned with the field for
larger values of h. It is known that for strong enough external
fields and strong enough anchoring, there exists a singular
ring located at the equator of the droplet ��=1,z=0�. This
can be shown from our expression for the director, Eq. �18�,
which was derived assuming a strong electric field. Indeed, if
we set �=1 and z=0 in this equation, we get an undefined
director which confirms the existence of the singular ring.

IV. TRANSVERSE MAGNETIC AND ELECTRIC
EIKONALS

Electromagnetic field propagation for anisotropic inhomo-
geneous media has been extensively studied. In fact, for the
case of stratified media, it has been utilized different proce-
dures for solving this problem. One of the most widely used
procedures is the so called Berreman formalism �15�, which
is very useful for solving problems where the configuration
is one-variable dependent. There are also some other more
restricted methods than the asymptotic ones, like the quasi-

isotropic approximation. A review paper of these formalisms
is given by �16�. There are, as well, general formalisms for
describing both the propagation of acoustic �17� and electro-
magnetic �18� waves in this kind of medium, which are
based on eikonal dyads. However, these formalisms do not
take advantage of the complete representation in terms of the
transverse magnetic �TM� modes and the transverse electric
�TE� modes which simplifies greatly the description of non-
magnetic media �20�. From Maxwells equations the TE ei-
konal equation was derived and is given by

��LTE�r� � ê�2 = �	ee, �20�

where ê=e�r� /e, with e�r� the electric field amplitude whose
magnitude is e and 	ee= ê ·	J· ê, � the magnetic permeability,
and L the optical path between two fixed points. As can be
seen from Eq. �20�, it only involves consistently components
of �L�r� perpendicular to ê. Complementarily, the corre-
sponding magnetic field for these modes, which is also trans-
verse, should be obtained from

h�r� = �LTE�r� � e�r�/� . �21�

The eikonal equation for the TM modes is given by �20�

��LTM � ĥ� · 	J −1 · ��LTM � ĥ� = � , �22�

where ĥ=h / �h�. Similarly, this equation only involves com-

ponents of �L�r� perpendicular to ĥ but in contrast to the TE
modes, the corresponding electric fields are not transverse, as
is evident from

e = − 	J −1 · �LTM � h . �23�

It is worthwhile to rewrite the eikonal equations �20� and
�22� in terms of the orthogonal coordinate system �q1 ,q2 ,q3�.
For a given q1 along ĥ and ê we have that Eqs. �20� and �22�
turn out to be

1

h2
2� �LTE

�q2
�2

+
1

h2
3� �LTE

�q3
�2

= �	11, �24�

and

	22
−1

h3
2 � �LTM

�q3
�2

−
2	23

−1

h2h3
� �LTM

�q2
�� �LTM

�q3
� +

	33
−1

h2
2 � �LTM

�q2
�2

= � .

�25�

Here hi �i=2,3� are scale factors and 	ij
−1 are the elements of

	J −1. We should remark that the ordinary or TE rays propa-
gate as in an isotropic medium with effective refraction in-
dex n2=�	11 whereas the extraordinary or TM rays are gov-
erned by a bilinear nondiagonal form for the ray components
pi=�L /�qi. Similar results have been found in the context of
geometrical acoustics where there exist three different polar-
izations: one quasilongitudinal and two quasitransverse
which in the general case cannot be decoupled �19�.

V. RAY TRACING

The TM eikonal for the radial configuration can be solved
analytically �21�. However, for the configuration in the pres-
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ence of field the situation is different since � depends on two
independent variables r and � and it is therefore convenient
to use an alternative Hamiltonian representation. Under this
formalism we replace a partial differential equation of first
order by a system of ordinary differential equations. The
equivalence between both representations not only is well
established in optics, but is valid in general in the context of
partial differential equations �22�.

The relevant components of the dielectric tensor are given
by 	rr=	�+	a cos2 ��x ,��, 	r�=−	a sin ��x ,��cos ��x ,��,
and 	��=	�+	a sin2 ��x ,�� which are functions of � and x
=r /R. Also, we identify p=�LTM/�r and q=�LTM/�� as the
ray radial and angular components and H=	�	
 as the
Hamiltonian of the system. In terms of these variables Eq.
�25� takes the form

	rrp
2 + 2

	r�

x
pq +

	��

x2 q2 = H , �26�

from which we can obtain the ray trajectories within the
droplet by using the Hamilton equations �23� given by

�H

�p
=

dx

d�
,

�H

�x
= −

dp

d�
, �27�

�H

��
= −

dp

d�
,

�H

�q
=

d�

d�
, �28�

where � is the parameter of the curve. Inserting Eq. �26� into
the three first of the Hamilton equations, we arrive at

dx

d�
= 2p	rr +

2	r�

x
q , �29�

x
d�

d�
= 2p	r� + 2	��

q

x
, �30�

dq

d�
= 	a

��p2 − q2/x2�sin 2� + �2qp cos 2���
cos2 � + ��x�2 sin2 �

��x� , �31�

where we have used Eq. �6� to simplify the last equation.
Here, we have not used the last Eq. �28� since one of the four
variables p ,q ,r, and � is dependent on the others through
Eq. �26�. For instance we can write p as

p = −
	r�

x	rr
q ±

�	�	
�	rrx
2 − q2�

x	rr
. �32�

Notice that this expression provides real values of p when
	rrx

2−q2�0 where the equality defines the locus of the turn-
ing points of the trajectories or caustics. Thus, after substi-
tuting 	rr and Eq. �6� it leads to

tan � =
1

��x�
� 	
x2 − q2

q2 − 	�x2 . �33�

It is important to stress that each sign of Eq. �32� corre-
sponds to one of the two branches of the trajectory that result
when this reaches the turning point or touches tangentially
the caustic. Thus, for a specific parametrization, one sign
describes the incident ray and the other the emerging one. To

find the ray trajectories, we solve numerically the system
defined by Eqs. �29�–�31� for �, r, and q by using the Runge-
Kutta method. The initial conditions are the position in polar
coordinates �R ,�0� that we chose in the border of the droplet
and q at the same point, which is related to the incident angle
by

q0 =
�	��sin��0 − �0��

��	�/	
�cos2��0 − �0� + sin2��0 − �0�
. �34�

In this equation �0 is the angle between the z axis and the
trajectory just inside the droplet �see Fig. 2�. Since we are
assuming that the plane wave is coming from an isotropic
medium, we have to take into account the ray deviation at
the frontier between both media. After imposing the corre-
sponding boundary conditions for a superposition of plane
wave electromagnetic fields, it can be shown that the com-
ponent of the wave vector parallel to the interface is con-
served �24�, which mathematically can be expressed as

�k1 · r�sup = �k2 · r�sup, �35�

where k1 and k2 are the wave vectors in the media 1 and 2.
Because this equation is satisfied on the surface, r should lie
there and the components of k1 and k2 parallel to the frontier
are conserved. For the nematic droplet k� and kr are the ray
components parallel and perpendicular to the homeotropi-
cally aligned droplet surface; thus the eikonal equation Eq.
�25� on the surface takes the form

	
kr
2 +

	�k�
2

x2 = 	
	�, �36�

where the components of the wave vector can be written in
terms of the angle formed by the ray within the droplet and
the inward normal to the surface �2 as

kr = �k�cos �2, k� = �k�sin �2. �37�

By substituting these components into Eq. �36�, we have

k� =
�	
	� sin �2

�	
 cos2 �2 + 	� sin2 �2

. �38�

FIG. 2. The angular coordinate of the point of incidence �0 and
the angle �0 between the trajectory just entering the droplet and the
z axis. We also show the angle of incidence �1 and the refracted
angle �2.
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Inserting this value of k� into Eq. �35� we obtain the equa-
tion that plays the role of Snell‘s law for isotropic media,

�	h sin �1 =
�	
	� sin �2

�	
 cos2 �2 + 	� sin2 �2

, �39�

where �1 is the angle formed between the ray in the matrix
and the outward normal to the surface �see Fig. 2� and �	h is
the refraction index in the same medium that we have indi-
cated by 1. It is important to remark that we have restricted
our derivation to the case of a droplet having a homeotropic
alignment, that is to say, this expression only describes the
case when the optical axis of the nematic has homeotropic
boundary conditions. The boundary condition for the general
case also can be deduced from Eq. �26� but we do not need it
for the present study.

Using Eq. �39� we can calculate the angle �0 in Eq. �34�
considering that the incident ray is parallel to the z axis. It
leads to

�0 = 
/2 − �0 − arcsin� �	� cos �0

�	
	�/	h + 	a cos2 �0
� .

Figure 3 shows the trajectories when the rays of a plane
wave front, coming from an isotropic medium of dielectric
constant 	h=	
 whose wave vector is parallel to the low fre-
quency electric field, cross a nematic droplet and emerge
from it with an emerging angle �. For different values of h,
it can be observed how the shadow cone which stands under
the droplet when no field is applied vanishes when a field is
imposed. Moreover, the ray deviations diminish for larger
values of h. We should mention that the rays crossing the
droplet almost by the border are the most deviated because
of the hard anchoring condition we used to calculate the
configuration. Hence, we expect that those rays will be less
deviated when replacing the latter condition by a more real-
istic weak anchoring condition. In Fig. 4 is plotted the ray
deviation as a function of the impact parameter xin param-
etrized by the external field. We note that for h=0 this de-
viation exhibits a minimum even for the rays crossing
through the center of the droplet, whereas this minimum
value vanishes for any value of h different from zero.

It is also interesting to remark that near the center of the
droplet, the derivative of � decreases as we incease the val-
ues of h. However, near the border of the droplet, this de-
rivative increases with increasing h. This is clearly shown for
h=10 and is mainly due to the hard anchoring boundary
condition we are using.

VI. CONCLUDING REMARKS

Here, we found an asympotic analytical expression for
describing the axial configuration obtained after applying to
the droplet a low frequency electric field with hard anchoring
homeotropic boundary conditions. This expression is exact in
certain regions of the droplet: the equator plane, the field
axis, and the border of the sphere. We also calculated the
radial dependence of the configuration by using the
boundary-layer technique.

The analytical configuration we found satisfies topologi-
cal conservation laws �25� because for a nonvanishing field,
it exhibits a ring disclination at the equator while for a van-
ishing field it reduces to the radial configuration showing a
point defect at the center.

Next, we found the ray trajectories of rays corresponding
to an initially plane wave coming from an isotropic medium

FIG. 3. Ray trajectories of a
set of initially parallel rays enter-
ing a droplet for various values of
h. The insets show the director
lines acquired by the nematic for
the same values of h. The dielec-
tric constants are 	
 =1.8 and 	�

=1.3 which corresponds to 5 CB
at a wavelength of 632 nm and at
a temperature of 25 °C.

FIG. 4. Deviation angle � as a function of the incidence impact
parameter xin parametrized by h.
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surrounding the droplet, crossing the droplet, and returning
to the isotropic medium. We made this for various nematic
configurations associated with different magnitudes of low
frequency fields. These results allowed us to show that a
nematic droplet in the absence of a low frequency field de-
flects the rays crossing the droplet, leaving a shadow below
it. On the other hand, when the droplet is under the action of
a low frequency field, the shadow disappears and the rays
suffer a smaller deflection which diminishes for larger low
frequency fields.

Thus, if a wave front is to traverse a structure having a
random arrangement of nematic droplets, the deflection of
the rays in the absence of the low frequency field will repeat
every time the light crosses each droplet, so that after many
droplets the wave front will be divided into pieces, each one
propagating in a different direction. Hence, the wave front
with defined phase and direction will be scattered and no

image will be seen through the matrix with droplets. In con-
trast, when the field is applied, a large portion of the rays will
not be deviated from their initial direction so that they retain
their phase and direction after crossing the matrix with drop-
lets, which therefore appears as a transparent medium. Thus,
these results are consistent with observed phenomenology of
the electro-optical effect in PDLC cells which scatter light in
the absence of applied fields while they become transparent
under the action of the field.

In contrast to other approaches, our analysis takes into
account explicitly the refractive effects within the droplet by
using the eikonal formulation valid in the optical limit. Since
in our results we obtain detailed information of the trajectory,
we can calculate the precise optical paths of the incident
wave front and therefore the diffraction spectra and transmit-
tance as a function of the applied field. This could be useful
for the design of optical devices.
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